COURSE PROPOSAL: MATH 4xy LINEAR OPTIMIZATION Hemanshu Kaul (kaul@math.iit.edu)

Enrollment: Elective for AM and other majors (especially CS, ECE, and BUS).

Prerequisites: MATH 332 (Matrices/ Elementary Linear Algebra). Note this automatically implies MATH 251 (Multivariable Calculus).

Lecture Schedule: 2 75 minute lectures per week.

Assessment:

Homework/Project	25-50%
Quizzes/Tests	30-50%
Final Exam	25-40%

Textbook: D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, 1997.

Course Outline:

- 1. Introduction [2 hours]
 - a. LP: formulations and examples
 - b. Piecewise linear convex objective functions
 - c. Graphical representation and solution
- 2. Geometry of Linear Programs [4 hours]
 - a. Polyhedra and convex sets
 - b. Extreme points, vertices, and basic feasible solutions
 - c. Degeneracy of basic solutions
 - d. Existence and optimality of extreme points
- 3. Simplex Method [7 hours]
 - a. Optimality conditions
 - b. Simplex method
 - c. Revised simplex method and full tableau implementation
 - d. Anticycling: Bland's rule
 - e. Initial basic feasible solution
 - f. Computational efficiency of the simplex method
- 4. Duality Theory and Sensitivity analysis [6 hours]
 - a. Dual linear program
 - b. Duality Theorems and Complementary Slackness
 - c. Dual Simplex method
 - d. Farkas' Lemma and its application to duality theorem
 - e. Sensitivity analysis and Parametric programming

- 5. Large Scale Optimization [4 hours]
 - a. Delayed column generation and Dantzig-Wolfe decomposition
 - b. Cutting plane methods and Benders decomposition
- 6. Optional Topics (selected based on class composition and background) [9 hours]
 - a. Interior Point Methods
 - i. The von Neumann algorithm
 - ii. The affine scaling algorithm
 - iii. The primal path following algorithm
 - b. Network Flow Problems
 - i. The minimum cost flow problem and the Network simplex algorithm
 - ii. The maximum flow problem and the Ford-Fulkerson algorithm
 - iii. The assignment problem and the Auction algorithm
 - c. Integer Programming
 - i. Gomory Cuts and Cutting plane algorithms
 - ii. Branch and bound
 - iii. Dynamic programming
 - iv. IP duality and Lagrangian Relaxation
- 7. Exams and Overflow [3 hours]